翻訳と辞書
Words near each other
・ Palio di Parma
・ Palio di Siena
・ Palio dubia
・ Palio gracilis
・ Palicourea lobbii
・ Palicourea prodiga
・ Palicourea sodiroi
・ Palicourea stenosepala
・ Palicourea subalatoides
・ Palicourea tectoneura
・ Palicourea wilesii
・ Palicus
・ Paliczyno
・ Paliem
・ Paliepiai
Palierne equation
・ Palifer
・ Palifermin
・ Paliga
・ Paliga anpingialis
・ Paliga damastesalis
・ Paliga fuscicostalis
・ Paliga ignealis
・ Paliga leucanalis
・ Paliga machoeralis
・ Paliga quadrigalis
・ Paliga rubicundalis
・ Paliga schenklingi
・ Paliganj
・ Paliganj (Vidhan Sabha constituency)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Palierne equation : ウィキペディア英語版
Palierne equation
Palierne equation connects the dynamic modulus of emulsions with the dynamic modulus of the two phases, size of the droplets and the interphase surface tension. The equation can also be used for suspensions of viscoelastic solid particles in viscoelastic fluids. The equation is named after French rheologist Jean-François Palierne who has proposed the equation in 1991.
For the dilute emulsions Palierne equation looks like:
:G^
*=G^
*_m(1+5\phi H^
*)
where G^
* is the dynamic modulus of the emulsion, G^
*_m is the dynamic modulus of the continuous phase (matrix), \phi is the volume fraction of the disperse phase and the H^
* is given as
:H^
*=\frac
where G^
*_d is the dynamic modulus of the disperse phase, \sigma is the surface tension between the phases and R is the radius of the droplets.〔
For the suspension of solid particles the value of H^
* is given as〔
:H^
*=\frac
The Palierne equation is usually extended for the finite volume concentrations of the disperse phase \phi as:〔
:G^
*=G^
*_m\frac
==References==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Palierne equation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.